These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of nitro-conjugated linoleic acid on the inflammatory response of murine macrophages activated with lipopolysaccharide derived from Prevotella intermedia. Author: Lee JE, Lee AR, Choi EY, Choi IS, Kim SJ. Journal: Inflammopharmacology; 2024 Feb; 32(1):561-573. PubMed ID: 37921960. Abstract: Nitro-conjugated linoleic acid (NO2-CLA) has been observed to manifest salutary signaling responses, including anti-inflammatory and antioxidant properties. Here, the authors have explored the influence and underlying mechanisms of NO2-CLA on the proinflammatory reaction of murine macrophages that were challenged with lipopolysaccharide (LPS) derived from Prevotella intermedia, a putative periodontopathic bacterium. Treatment of LPS-activated RAW264.7 cells with NO2-CLA notably dampened the secretion of iNOS-derived NO, IL-1β and IL-6 as well as their gene expressions and significantly enhanced the markers for M2 macrophage polarization. NO2-CLA promoted the HO-1 expression in cells challenged with LPS, and tin protoporphyrin IX, an HO-1 inhibitor, significantly reversed the NO2-CLA-mediated attenuation of NO secretion, but not IL-1β or IL-6. We found that cells treated with NO2-CLA significantly increased mRNA expression of PPAR-γ compared to control cells, and NO2-CLA significantly reverted the decrease in PPAR-γ mRNA caused by LPS. Nonetheless, antagonists to PPAR-γ were unable to reverse the NO2-CLA-mediated suppression of inflammatory mediators. In addition, NO2-CLA did not alter the p38 and JNK activation elicited by LPS. Both NF-κB reporter activity and IκB-α degradation caused by LPS were notably diminished by NO2-CLA. NO2-CLA was observed to interrupt the nuclear translocation and DNA binding of p50 subunits caused by LPS with no obvious alterations in p65 subunits. Further, NO2-CLA attenuated the phosphorylation of STAT1/3 elicited in response to LPS. We propose that NO2-CLA could be considered as a possible strategy for the therapy of periodontal disease, although additional researches are certainly required to confirm this.[Abstract] [Full Text] [Related] [New Search]