These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Isophorone-based AIEgens fluorescent probe with red emission for targeting lipid droplets and identifying non-alcoholic fatty liver disease. Author: Wang H, Hu L, Yang J, Zhang C, Wang Z, Shen X, Chen X, He J, Pan J, Gu X. Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2024 Feb 05; 306():123588. PubMed ID: 37922852. Abstract: Due to the disorder of lipid metabolism, the excessive accumulation of lipid droplets (LDs) in liver cells can result in the occurrence of non-alcoholic fatty liver disease (NAFLD). Therefore, it is great of significance to design and synthesized LDs-specific fluorescent probes for the early diagnosis of NAFLD. Herein, we developed a series of aggregation-induced emission (AIE) probes ISO-LD1, ISO-LD2 and ISO-LD3 based on isophorone group for LDs-specific imaging in living cells. The photophysical properties demonstrated that all the probes with red emission (λem > 600 nm) exhibited a strong fluorescence in high polarity solvents. In particular, probe ISO-LD3 has a highest fluorescence quantum yield (except for 1,4-dioxane) and a larger Stokes shift. Confocal laser scanning microscopy experiments indicated that probe ISO-LD3 could specifically stain LDs via a "washing-free" procedure within 10 s, and monitor the dynamic behaviors of LDs exhibiting a high signal/noise ratio. Importantly, given the satisfactory performance of probe ISO-LD3, it has been successfully used for the detection of the normal liver tissues and fatty liver tissues, respectively. This work illustrated that ISO-LD3 is a promising tool for the detection of LDs and LDs-related diseases.[Abstract] [Full Text] [Related] [New Search]