These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 3D flower-like zirconium magnesium oxide nanocomposite for efficient fluoride removal. Author: Mandal S, Panda B, Mondal D, Khatun J, Dhak P, Dhak D. Journal: Environ Sci Pollut Res Int; 2023 Dec; 30(56):119491-119505. PubMed ID: 37930573. Abstract: A 3D flower-shaped bimetallic nanocomposite zirconium magnesium oxide (ZMO) was prepared first time by the controlled solution combustion method using triethanolamine (TEA) as a fuel and chelating agent. The composite material was used to remove excess fluoride via adsorption. The thermal stability of the adsorbent was characterized by thermogravimetric analysis (TGA). Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD) were used to characterize the adsorbent. The surface charge of the nano adsorbent was determined by Zeta Sizer. The surface area and pore volume of the adsorbent were determined by Brunauer-Emmett-Teller (BET) isotherm and Barrett-Joyner-Halenda (BJH) methods. The adsorption behavior of fluoride was studied systematically varying the pH, contact time, adsorbent dose, and initial fluoride concentration. The adsorption followed the Langmuir isotherm model with a maximum adsorption capacity of 42.14 mg/g. The pseudo-second-order kinetic model was confirmed by the adsorption study. The maximum adsorption efficiency was in the 6-10 pH range. The reaction mechanism was mainly based on ion exchange between hydroxy and fluoride ions which was proven by X-ray photoelectron spectroscopy (XPS). Real water tests indicated that ZMO could be used as a potential defluoridation agent for fluoride containing groundwater treatment.[Abstract] [Full Text] [Related] [New Search]