These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Novel amino-modified bamboo-derived biochar-supported nano-zero-valent iron (AMBBC-nZVI) composite for efficient Cr(VI) removal from aqueous solution. Author: Zhou X, Wang Y, Liu H, Zhang Y, Fan Y, Mo S, Li H, Wang J, Lin H. Journal: Environ Sci Pollut Res Int; 2023 Dec; 30(57):119935-119946. PubMed ID: 37934405. Abstract: Biochar-supported nano-zero-valent iron (BC-nZVI) composites have been extensively investigated for the treatment of Cr(VI)-containing wastewater. However, the inherent oxygen-containing groups with negative charges on BC exhibit electrostatic repulsion of the electronegative Cr(VI) species, limiting Cr(VI) removal. To overcome this limitation, this study prepared and used amino-modified bamboo-derived BC (AMBBC) as a supporting matrix to synthesize a novel AMBBC-nZVI composite. The amino groups (-NH2) on AMBBC were easily protonated and transformed into positively charged ions (-NH3+), which favored the attraction of Cr(VI) to AMBBC-nZVI, enhancing Cr(VI) removal. The experimental results demonstrated that the Cr(VI) removal efficiency of AMBBC-nZVI was 95.3%, and that of BBC-nZVI was 83.8% under the same conditions. The removal of Cr(VI) by AMBBC-nZVI followed the pseudo-second-order kinetic model and Langmuir isotherm model and was found to be a monolayer chemisorption process. Thermodynamic analysis revealed that the Cr(VI) removal process was spontaneous and endothermic. The mechanism analysis of Cr(VI) removal indicated that under an acidic condition, the -NH3+ groups on AMBBC adsorbed the electronegative Cr(VI) species via electrostatic interaction, promoting the attachment of Cr(VI) on AMBBC-nZVI; the adsorbed Cr(VI) was then reduced to Cr(III) by Fe0 and Fe(II), accompanied by the formation of Fe(III); moreover, AMBBC allowed the electron shuttle of nZVI to reduce Cr(VI); finally, the Cr(III) and Fe(III) species deposited on the surface of AMBBC-nZVI as Cr(III)-Fe(III) hydroxide coprecipitates.[Abstract] [Full Text] [Related] [New Search]