These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Therapeutic Effects of Mesenchymal/Stromal Stem Cells and Their Derived Extracellular Vesicles in Rheumatoid Arthritis. Author: Tsiapalis D, Floudas A, Tertel T, Boerger V, Giebel B, Veale DJ, Fearon U, O'Driscoll L. Journal: Stem Cells Transl Med; 2023 Dec 18; 12(12):849-862. PubMed ID: 37934808. Abstract: Currently available therapies for rheumatoid arthritis (RA) are inadequate to alleviate the inflammation and reduce joint damage. While the immune-regulatory effect of human mesenchymal/stromal stem cells (MSCs) extracellular vesicles (EVs) has been tested in many inflammation-related diseases, little is known regarding their effect on patients with RA. Thus, we assessed the effect of human MSCs and MSC-EVs (from naïve or IFN-β-primed MSCs) on CD4+ T cells from patients with RA. Moreover, we investigated the effect of MSC-EVs on RA patients-derived synovial fibroblasts (FLS). MSC-EVs were prepared using a PEG precipitation followed by ultracentrifugation-based protocol. Applied to RA CD4+ T cells, EVs from IFN-β-primed MSCs, suppressed the expression of more key RA-associated cytokines (IL-4, GM-CSF IFN-γ, IL-2, TNF-α), and decreased CD4+ T-cell polyfunctionality than MSCs or EVs from naïve MSCs. MSCs mediated a slight decrease in the frequency of T-regulatory cells, while MSC-EVs rescued the frequency of T-regulatory cells. MSCs significantly inhibited CD4+ T-cell proliferation (P < .05), while no inhibition was observed in response to EV preparations. EVs from IFN-β-primed MSCs inhibited (P < .01) RA FLS migration and downregulated (P < .05) RA FLS surface markers CD34 and HLA-DR. Collectively, we demonstrated the immune-modulatory function of MSCs and their derived EVs in RA CD4+ T cells, which could be further enhanced by priming MSCs with IFN-β. Moreover, EVs from IFN-β-primed MSCs more efficiently inhibit RA FLS migration, and expression of RA FLS-related surface markers, suggesting these EVs as a potent therapy for RA.[Abstract] [Full Text] [Related] [New Search]