These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hollow mesoporous carbon supported Co-modified Cu/Cu2O electrocatalyst for nitrate reduction reaction.
    Author: Zhao Y, Liang S, Zhao Y, Zhang H, Zheng X, Li Z, Chen L, Tang J.
    Journal: J Colloid Interface Sci; 2024 Feb; 655():208-216. PubMed ID: 37935072.
    Abstract:
    The electroreduction of nitrate (NO3-) pollutants to ammonia (NH3) provides a sustainable approach for both wastewater treatment and NH3 synthesis. However, electroreduction of nitrate requires multi-step electron and proton transfer, resulting in a sluggish reaction rate. Herein, we synthesized a Co-modified Cu/Cu2O catalyst supported on hollow mesoporous carbon substrates (Co/Cu/Cu2O-MesoC) by a one-step microwave-assisted reduction method. At -0.25 V vs. reversible hydrogen electrode (RHE), Co/Cu/Cu2O-MesoC shows a Faradaic efficiency (FE) of 100 ± 1% in 0.1 M NO3-. Notably, the maximum NH3 yield rate (YieldNH3) reaches 6.416 ± 0.78 mmol mgcat-1h-1 at -0.45 V vs. RHE, which is much better than most of the previous reports. Electrochemical evaluation and in-situ Fourier transform infrared (FTIR) spectroscopy reveal that the addition of Co could promote water electrolysis, and the generated H* is involved in the following hydrogenation of intermediates, ultimately leading to faster kinetics and energetics during electrocatalytic conversion of NO3- to NH3. This synergetic electrocatalysis strategy opens a new avenue for the development of high-activity, selectivity, and stability catalysts.
    [Abstract] [Full Text] [Related] [New Search]