These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Green and low-temperature synthesis of the magnetic modified biochar under the air atmosphere for the adsorptive removal of heavy metal ions from wastewater: CCD-RSM experimental design with isotherm, kinetic, and thermodynamic studies.
    Author: Arabkhani P, Asfaram A, Sadegh F.
    Journal: Environ Sci Pollut Res Int; 2023 Dec; 30(57):120085-120102. PubMed ID: 37936036.
    Abstract:
    The accumulation of heavy metal ions in living cells leads to biological damage, which makes the necessity of using new methods to effectively remove heavy metal ions from the environment more vital. In this work, a magnetic modified biochar was prepared under regular air atmosphere and low temperature (220 ºC) and used as a low-cost and green adsorbent for efficient adsorptive removal of cobalt (Co(II)) and Lead (Pb(II)) ions from contaminated waters. The adsorption process was modeled and optimized using CCD-RSM to maximize the removal efficiency of heavy metal ions, as well as was monitored in detail by isotherm, kinetic, and thermodynamic studies. The results show that the Langmuir maximum adsorption capacity of the adsorbent reached 237.92 mg g-1 (single) and 121.23 mg g-1 (binary) for Co(II) and 207.21 mg g-1 (single) and 106.56 mg g-1 (binary) for Pb(II) under the short time of 25 min and solution pH of 6.0. The kinetic studies revealed that the pseudo-first-order model was the best-fitted model to experimental data and indicated that the adsorption process was mostly through chemisorption. Also, thermodynamic studies showed that that adsorptive removal of Co(II)and Pb(II)ions followed an endothermic and spontaneous process. The reusability studies demonstrated that the adsorbent could be successfully regenerated with 5 mL of 0.1 mol L-1 HNO3 solution, and the adsorption efficiency was retaining about 90% after four adsorption-desorption cycles. Also, the results from using real water samples, including drinking water, groundwater, and river water, implied that the synthesized magnetic modified biochar was highly efficient for practical treatment processes. Overall, the results indicated that the proposed magnetic biochar can be considered as a cost-effective and efficient adsorbent for adsorptive removal of heavy metal ions from contaminated waters.
    [Abstract] [Full Text] [Related] [New Search]