These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis, crystal structure and thermal properties of poly[[μ-1,2-bis-(pyridin-4-yl)ethene-κ2N:N'-μ-bromido-copper(I)] 1,2-bis-(pyridin-4-yl)ethene 0.25-solvate]. Author: Näther C, Müller-Meinhard A, Jess I. Journal: Acta Crystallogr E Crystallogr Commun; 2023 Nov 01; 79(Pt 11):1028-1032. PubMed ID: 37936841. Abstract: The reaction of copper(I) bromide with 1,2-bis-(pyridin-4-yl)ethene in aceto-nitrile leads to the formation of the title compound, {[CuBr(C12H10N2)]·0.25C12H10N2}n or CuBr(4-bpe)·0.25(4-bpe) [4-bpe = 1,2-bis-(pyridin-4-yl)ethene]. The asymmetric unit consists of one copper(I) cation and one bromide anion in general positions as well as two crystallographically independent half 4-bpe ligands and a quarter of a disordered 4-bpe solvate mol-ecule that are completed by centers of inversion. The copper(I) cations are tetra-hededrally coordinated as CuBr2N2 and linked by pairs of μ-1,1-bridging bromide anions into centrosymmetric dinuclear units that are further connected into layers by the 4-bpe coligands. Between the layers, inter-layer C-H⋯Br hydrogen bonding is observed. The layers are arranged in such a way that cavities are formed in which the disordered 4-bpe solvate mol-ecules are located. Powder X-ray (PXRD) investigations reveal that a pure sample has been obtained. Thermogravimetric (TG) and differential thermoanalysis (DTA) measurements show two mass losses that are accompanied by endothermic events in the DTA curve. The first mass loss correspond to the removal of 0.75 4-bpe mol-ecules, leading to the formation of (CuBr)2(4-bpe), already reported in the literature as proven by PXRD.[Abstract] [Full Text] [Related] [New Search]