These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Different Sources of Bone Marrow Mesenchymal Stem Cells: A Comparison of Subchondral, Mandibular, and Tibia Bone-derived Mesenchymal Stem Cells. Author: Wang Y, Li HY, Guan SY, Yu SH, Zhou YC, Zheng LW, Zhang J. Journal: Curr Stem Cell Res Ther; 2024; 19(7):1029-1041. PubMed ID: 37937557. Abstract: BACKGROUND: Stem cell properties vary considerably based on the source and tissue site of mesenchymal stem cells (MSCs). The mandibular condyle is a unique kind of craniofacial bone with a special structure and a relatively high remodeling rate. MSCs here may also be unique to address specific physical needs. OBJECTIVE: The aim of this study was to compare the proliferation and multidirectional differentiation potential among MSCs derived from the tibia (TMSCs), mandibular ramus marrow (MMSCs), and condylar subchondral bone (SMSCs) of rats in vitro. METHODS: Cell proliferation and migration were assessed by CCK-8, laser confocal, and cell scratch assays. Histochemical staining and real-time PCR were used to evaluate the multidirectional differentiation potential and DNA methylation and histone deacetylation levels. RESULTS: The proliferation rate and self-renewal capacity of SMSCs were significantly higher than those of MMSCs and TMSCs. Moreover, SMSCs possessed significantly higher mineralization and osteogenic differentiation potential. Dnmt2, Dnmt3b, Hdac6, Hdac7, Hdac9, and Hdac10 may be instrumental in the osteogenesis of SMSCs. In addition, SMSCs are distinct from MMSCs and TMSCs with lower adipogenic differentiation and chondrogenic differentiation potential. The multidirectional differentiation capacities of TMSCs were exactly the opposite of those of SMSCs, and the results of MMSCs were intermediate. CONCLUSION: This research offers a new paradigm in which SMSCs could be a useful source of stem cells for further application in stem cell-based medical therapies due to their strong cell renewal and osteogenic capacity.[Abstract] [Full Text] [Related] [New Search]