These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Discovery of Novel Pyrazol-5-yl-benzamide Derivatives Containing a Thiocyanato Group as Broad-Spectrum Fungicidal Candidates.
    Author: Li Y, Yang H, Ma Y, Cao Y, Xu D, Liu X, Xu G.
    Journal: J Agric Food Chem; 2023 Nov 22; 71(46):17700-17712. PubMed ID: 37939232.
    Abstract:
    In an effort to promote the development of new fungicides, a series of 48 novel N-(1-methyl-4-thiocyanato-1H-pyrazol-5-yl)-benzamide derivatives A1-A36 and B1-B12 were designed and synthesized by incorporating a thiocyanato group into the pyrazole ring, and their fungicidal activities were evaluated against Sclerotinia sclerotiorum, Valsa mali, Botrytis cinerea, Rhizoctonia solani, and Phytophthora capsici. In the in vitro antifungal/antioomycete assay, many of the target compounds exhibited good broad-spectrum fungicidal activities. Among them, compound A36 displayed the best antifungal activity against V. mali with an EC50 value of 0.37 mg/L, which was significantly higher than that of the positive controls fluxapyroxad (13.3 mg/L) and dimethomorph (10.3 mg/L). Meanwhile, compound B6 exhibited the best antioomycete activity against P. capsici with an EC50 value of 0.41 mg/L, which was higher than that of azoxystrobin (29.2 mg/L) but lower than that of dimethomorph (0.13 mg/L). Notably, compound A27 displayed broad-spectrum inhibitory activities against V. mali, B. cinerea, R. solani, S. sclerotiorum, and P. capsici with respective EC50 values of 0.71, 1.44, 1.78, 0.87, and 1.61 mg/L. The in vivo experiments revealed that compounds A27 and B6 presented excellent protective and curative efficacies against P. capsici, similar to that of the positive control dimethomorph. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses showed that compound B6 could change the mycelial morphology and severely damage the ultrastructure of P. capsici. The results of the in vitro SDH enzymatic inhibition experiments indicated that compounds A27 and B6 could effectively inhibit the activity of P. capsici SDH (PcSDH). Furthermore, molecular docking analysis demonstrated significant hydrogen bonds and Pi-S bonding between the target compounds and the key amino acid residues of PcSDH, which could explain the probable mechanism of action. Collectively, these studies provide a valuable approach to expanding the fungicidal spectrum of pyrazol-5-yl-benzamide derivatives.
    [Abstract] [Full Text] [Related] [New Search]