These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Intracellular staining study of the feline cuneate nucleus. I. Terminal patterns of primary afferent fibers.
    Author: Fyffe RE, Cheema SS, Rustioni A.
    Journal: J Neurophysiol; 1986 Nov; 56(5):1268-83. PubMed ID: 3794769.
    Abstract:
    The terminal arborizations of single identified cutaneous hair follicle and slowly adapting type I receptors and muscle (Ia) afferents have been studied in the cuneate nucleus of cats after intra-axonal injection of horseradish peroxidase. Penetrations were mainly at the middle and caudal levels of the nucleus--i.e., from obex to approximately 7 mm caudal to it. Following histochemical processing, the injected axons, along with their collateral branches and synaptic terminals, were visualized and examined with light and electron microscopy. Cutaneous afferents in middle cuneate (from obex to approximately 4 mm caudal to it) issued collateral branches, along the rostrocaudal axis of the nucleus, at intervals between 100 and 1,000 microns. The terminal field of each collateral's branches encompassed an area elongated largely rostrocaudally and virtually confined to the dorsal part of the middle cuneate. Although adjacent collaterals had nonoverlapping terminal arborizations, each one could give rise to separate foci of terminations. Muscle afferents differed, on the whole, from cutaneous afferents in the location and extent of collateral branching and terminal arborizations. However, because muscle fibers terminated primarily in the ventral region of the cuneate, but nevertheless exhibited sparser terminations in the dorsal part of the middle cuneate, there was some spatial overlap between zones of muscle and cutaneous projection. Synaptic boutons of cutaneous afferent fibers contained round clear vesicles, contacted dendritic profiles (sometimes more than one), and were postsynaptic to small boutons containing polymorphic vesicles. In contrast, boutons of muscle afferent fibers contacted somatic and dendritic profiles and were not postsynaptic to other boutons. The results are in general agreement with previous anatomical and electrophysiological work; however, the extent of the terminal field of single collateral branches may provide for a greater convergence of different receptor classes and of receptive fields on neurons in the middle cuneate than estimated by previous electrophysiological investigations.
    [Abstract] [Full Text] [Related] [New Search]