These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Low-Thermal-Budget Ferroelectric Field-Effect Transistors Based on CuInP2S6 and InZnO.
    Author: Ryu H, Kang J, Park M, Bae B, Zhao Z, Rakheja S, Lee K, Zhu W.
    Journal: ACS Appl Mater Interfaces; 2023 Nov 22; 15(46):53671-53677. PubMed ID: 37947841.
    Abstract:
    In this paper, we demonstrate low-thermal-budget ferroelectric field-effect transistors (FeFETs) based on the two-dimensional ferroelectric CuInP2S6 (CIPS) and oxide semiconductor InZnO (IZO). The CIPS/IZO FeFETs exhibit nonvolatile memory windows of ∼1 V, low off-state drain currents, and high carrier mobilities. The ferroelectric CIPS layer serves a dual purpose by providing electrostatic doping in IZO and acting as a passivation layer for the IZO channel. We also investigate the CIPS/IZO FeFETs as artificial synaptic devices for neural networks. The CIPS/IZO synapse demonstrates a sizable dynamic ratio (125) and maintains stable multilevel states. Neural networks based on CIPS/IZO FeFETs achieve an accuracy rate of over 80% in recognizing MNIST handwritten digits. These ferroelectric transistors can be vertically stacked on silicon complementary metal-oxide semiconductor (CMOS) with a low thermal budget, offering broad applications in CMOS+X technologies and energy-efficient 3D neural networks.
    [Abstract] [Full Text] [Related] [New Search]