These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structure and in vitro digestibility of amylose-lipid complexes formed by an extrusion-debranching-complexing strategy.
    Author: Liu Q, Guan H, Guo Y, Wang D, Yang Y, Ji H, Jiao A, Jin Z.
    Journal: Food Chem; 2024 Mar 30; 437(Pt 2):137950. PubMed ID: 37952395.
    Abstract:
    The formation of amylose-lipid complexes, known as resistant starch type Ⅴ (RS5), is limited by the low content of amylose in natural starch, increasing the amylose content is an effective approach to improve the yield of RS5. In this paper, an extrusion-debranching-complexing strategy with two extrusions was proposed to increase the formation of amylose-lipid complexes. A combination of corn starch (CS), pullulanase (60 U/g, w/w), and lauric acid (LA) with different contents of 4 %, 6 % and 8 % (w/w) generated enzymatically debranched extruded corn starch-lauric acid (EECS-LA) complexes after the second extrusion. The EECS-LA complexes were ordered form II complexes, with a significantly improved short-range molecular order. The melting temperature was in the range of 105-145℃. The enthalpy change increased with the increase of LA content and the value was 9.42 J/g for EECS-8 %LA complexes; these complexes could reform after dissociation. Scanning electron microscopy examination of the EECS-LA complexes revealed an irregular lamellar structure. The RS content of EECS-LA complexes increased significantly, achieving a value of 38.34 % for EECS-8 %LA complexes. This extrusion-debranching-complexing strategy is effective for preparing RS5 and could be useful in industry for the continuous production of RS5.
    [Abstract] [Full Text] [Related] [New Search]