These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A novel strategy for integration of oxidation within advanced thermal hydrolysis of sludge.
    Author: Ngo PL, Young BR, Baroutian S.
    Journal: Chemosphere; 2024 Jan; 348():140676. PubMed ID: 37956932.
    Abstract:
    Due to its environmental impact, the growing production of sewage sludge is a prime concern for wastewater treatment plants. In this study, advanced thermal hydrolysis, the combination of thermal hydrolysis and oxygen, was examined to enhance biogas production and overcome the disadvantages of thermal hydrolysis, including sludge colour, high energy consumption, and high level of ammonia concentration in the treated sludge. A mixture of 55 % primary sludge and 45 % waste activated sludge was pre-treated using advanced thermal hydrolysis at 100, 115, 130, and 145 °C with a processing time varied from 5 to 30 min and oxygen pressure from 10 to 30 bar before anaerobic digestion. Advanced thermal hydrolysis process at 145 °C 15 min 20 bar O₂ is the condition that provided the highest biogas yield (439.6 mL/g VS added). At this treatment condition, the concentration of ammonia nitrogen and propionic acid in the treated sludge was sufficiently low (approximately 302 mg/L and 559.7 mg/L, respectively) to minimise adverse effects on anaerobic digestion.
    [Abstract] [Full Text] [Related] [New Search]