These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gold-Silver Alloy Nanoparticle-Incorporated Pitaya-Type Silica Nanohybrids for Sensitive Competitive Lateral Flow Immunoassay.
    Author: Tong L, Li D, Huang M, Huang L, Wang J.
    Journal: Anal Chem; 2023 Nov 28; 95(47):17318-17327. PubMed ID: 37967331.
    Abstract:
    Although the competitive lateral flow immunoassay (CLFIA) using gold nanoparticles (AuNPs) as labels has been widely adopted for the rapid detection of small molecules, its sensitivity is often constrained by the insufficient colorimetric signal produced by conventional AuNPs labels. Herein, we introduce a new type of intensified colorimetric label, denoted as SAAS, which is engineered by integrating gold-silver alloy nanoparticles (Au-Ag NPs) within a dendritic silica scaffold. These pitaya-type silica nanohybrids combine the advantages of the amplified molar extinction coefficient of alloy units with the signal collective effect of numerous Au-Ag NPs in a singular label. The SAAS-based CLFIA strips not only achieve qualitative screening of aflatoxin B1 (AFB1) at an extraordinarily low concentration of 0.2 ng/mL by the naked eye but also enable precise AFB1 quantification through a smartphone, with a remarkable limit of detection of 0.00314 ng/mL. Moreover, by leveraging SAAS as a quencher, we have delved into transforming the conventional signal-off mode of competitive immunoassay into a signal-on configuration. This innovation led to the development of a fluorescent LFIA that augments interpretative precision and sensitivity. Our study demonstrates the substantial potential of the proposed nanohybrid labels in enhancing the sensitivity of CLFIA for detecting small molecules.
    [Abstract] [Full Text] [Related] [New Search]