These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Investigations into mRNA Lipid Nanoparticles Shelf-Life Stability under Nonfrozen Conditions.
    Author: Reinhart AG, Osterwald A, Ringler P, Leiser Y, Lauer ME, Martin RE, Ullmer C, Schumacher F, Korn C, Keller M.
    Journal: Mol Pharm; 2023 Dec 04; 20(12):6492-6503. PubMed ID: 37975733.
    Abstract:
    mRNA LNPs can experience a decline in activity over short periods (ranging from weeks to months). As a result, they require frozen storage and transportation conditions to maintain their full functionality when utilized. Currently approved commercially available mRNA LNP vaccines also necessitate frozen storage and supply chain management. Overcoming this significant inconvenience in the future is crucial to reducing unnecessary costs and challenges associated with storage and transport. In this study, our objective was to illuminate the potential time frame for nonfrozen storage and transportation conditions of mRNA LNPs without compromising their activity. To achieve this goal, we conducted a stability assessment and an in vitro cell culture delivery study involving five mRNA LNPs. These LNPs were constructed by using a standard formulation similar to that employed in the three commercially available LNP formulations. Among these formulations, we selected five structurally diverse ionizable lipids─C12-200, CKK-E12, MC3, SM-102, and lipid 23─from the existing literature. We incorporated these lipids into a standard LNP formulation, keeping all other components identical. The LNPs, carrying mRNA payloads, were synthesized by using microfluidic mixing technology. We evaluated the shelf life stability of these LNPs over a span of 9 weeks at temperatures of 2-8, 25, and 40 °C, utilizing an array of analytical techniques. Our findings indicated minimal impact on the hydrodynamic diameter, zeta potential, encapsulation efficiency, and polydispersity of all LNPs across the various temperatures over the studied period. The RiboGreen assay analysis of LNPs showed consistent mRNA contents over several weeks at various nonfrozen storage temperatures, leading to the incorrect assumption of intact and functional LNPs. This misunderstanding was rectified by the significant differences observed in EGFP protein expression in an in vitro cell culture (using HEK293 cells) across the five LNPs. Specifically, only LNP 1 (C12-200) and LNP 4 (SM-102) exhibited high levels of EGFP expression at the start (T0), with over 90% of HEK293 cells transfected and mean fluorescence intensity (MFI) levels exceeding 1. Interestingly, LNP 1 (C12-200) maintained largely unchanged levels of in vitro activity over 11 weeks when stored at both 2-8 and 25 °C. In contrast, LNP 4 (SM-102) retained its functionality when stored at 2-8 °C over 11 weeks but experienced a gradual decline of in vitro activity when stored at room temperature over the same period. Importantly, we observed distinct LNP architectures for the five formulations through cryo-EM imaging. This highlights the necessity for a deeper comprehension of structure-activity relationships within these complex nanoparticle structures. Enhancing our understanding in this regard is vital for overcoming storage and stability limitations, ultimately facilitating the broader application of this technology beyond vaccines.
    [Abstract] [Full Text] [Related] [New Search]