These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Twisted Integration of Complex Oxide Magnetoelectric Heterostructures via Water-Etching and Transfer Process.
    Author: Yang G, Dong G, Zhang B, Xu X, Zhao Y, Hu Z, Liu M.
    Journal: Nanomicro Lett; 2023 Nov 17; 16(1):19. PubMed ID: 37975933.
    Abstract:
    The (001)-oriented ferromagnetic La0.67Sr0.33MnO3 films are stuck onto the (011)-oriented ferroelectric single-crystal 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 substrate with 0° and 45° twist angle. By applying a 7.2 kV cm-1 electric field, the coexistence of uniaxial and fourfold in-plane magnetic anisotropy is observed in 45° Sample, while a typical uniaxial anisotropy is found in 0° Sample. Manipulating strain mode and degree that can be applied to epitaxial complex oxide thin films have been a cornerstone of strain engineering. In recent years, lift-off and transfer technology of the epitaxial oxide thin films have been developed that enabled the integration of heterostructures without the limitation of material types and crystal orientations. Moreover, twisted integration would provide a more interesting strategy in artificial magnetoelectric heterostructures. A specific twist angle between the ferroelectric and ferromagnetic oxide layers corresponds to the distinct strain regulation modes in the magnetoelectric coupling process, which could provide some insight in to the physical phenomena. In this work, the La0.67Sr0.33MnO3 (001)/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (011) (LSMO/PMN-PT) heterostructures with 45º and 0º twist angles were assembled via water-etching and transfer process. The transferred LSMO films exhibit a fourfold magnetic anisotropy with easy axis along LSMO < 110 >. A coexistence of uniaxial and fourfold magnetic anisotropy with LSMO [110] easy axis is observed for the 45° Sample by applying a 7.2 kV cm-1 electrical field, significantly different from a uniaxial anisotropy with LSMO [100] easy axis for the 0° Sample. The fitting of the ferromagnetic resonance field reveals that the strain coupling generated by the 45° twist angle causes different lattice distortion of LSMO, thereby enhancing both the fourfold and uniaxial anisotropy. This work confirms the twisting degrees of freedom for magnetoelectric coupling and opens opportunities for fabricating artificial magnetoelectric heterostructures.
    [Abstract] [Full Text] [Related] [New Search]