These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sesamol as a potential candidate for the treatment of hepatic fibrosis, based on its regulation of FXR/LXR axis-mediated inhibition of autophagy through crosstalk between hepatic cells and macrophage.
    Author: Jiang Y, Hou L, Dou J, Xuan M, Cui Z, Lian L, Nan J, Wu Y.
    Journal: Phytomedicine; 2024 Jan; 123():155145. PubMed ID: 37976698.
    Abstract:
    BACKGROUND: Sesamol (SEM), a natural lignan compound isolated from sesame, has strong anti-oxidant property, regulating lipid metabolism, decreasing cholesterol and hepatoprotection. However, its anti-hepatic fibrosis effect and mechanisms have not been comprehensively elucidated. HYPOTHESIS/PURPOSE: This study aims to investigate the anti-hepatic fibrosis of SEM and its underlying mechanisms. METHOD: C57BL/6 mice with hepatic fibrosis were induced by TAA, then administrated with SEM or curcumin, respectively. HSCs were stimulated by TGF-β or conditioned medium, and then cultured with SEM, GW4064, GW3965, Rapamycin (RA) or 3-methyladenine (3-MA), respectively. Mice with hepatic fibrosis also were administrated with SEM, RA or 3-MA to estimate the effect of SEM on autophagy. RESULTS: In vitro, SEM significantly inhibited extracellular matrix deposition, P2 × 7r-NLRP3, and inflammatory cytokines. SEM increased FXR and LXRα/β expressions and decreased MAPLC3α/β and P62 expressions, functioning as 3-MA (autophagy inhibitor). In vivo, SEM reduced serum transaminase, histopathology changes, fibrogenesis, autophagy markers and inflammatory cytokines caused by TAA. LX-2 were activated with conditioned medium from LPS-primed THP-1, which resulted in significant enhance of autophagy markers and inflammatory cytokines and decrease of FXR and LXRα/β expressions. SEM could reverse above these changes and function as 3-MA, GW4064, or GW3965. Deficiency of FXR or LXR attenuated the regulation of SEM on α-SMA, MAPLC3α/β, P62 and IL-1β in activated LX-2. In activated THP-1, deficiency of FXR could decrease the expression of LXR, and vice versa. Deficiency of FXR or LXR in activated MΦ decreased the expressions of FXR and LXR in activated LX-2. Deficiency FXR or LXR in activated MΦ also attenuated the regulation of SEM on α-SMA, MAPLC3α/β, P62, caspase-1 and IL-1β. In vivo, SEM significantly reversed hepatic fibrosis via FXR/LXR and autophagy. CONCLUSION: SEM could regulate hepatic fibrosis by inhibiting fibrogenesis, autophagy and inflammation. FXR/LXR axis-mediated inhibition of autophagy contributed to the regulation of SEM against hepatic fibrosis, especially based on involving in the crosstalk of HSCs-macrophage. SEM might be a prospective therapeutic candidate, and its mechanism would be a new direction or strategy for hepatic fibrosis treatment.
    [Abstract] [Full Text] [Related] [New Search]