These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Integrating g-C3N4 nanosheets with MOF-derived porous CoFe2O4 to form an S-scheme heterojunction for efficient pollutant degradation via the synergy of photocatalysis and peroxymonosulfate activation. Author: Chen L, Wang F, Zhang J, Wei H, Dang L. Journal: Environ Res; 2024 Jan 15; 241():117653. PubMed ID: 37980982. Abstract: When confronted with wastewater that is characterized by complex composition, stable molecular structure, and high concentration, relying solely on photocatalytic technology proves inadequate in achieving satisfactory degradation results. Therefore, the integration of other highly efficient degradation techniques has emerged as a viable approach to address this challenge. Herein, a novel strategy was employed whereby the exfoliated g-C3N4 nanosheets (CNs) with exceptional photocatalytic performance, were intimately combined with porous rod-shaped cobalt ferrite (CFO) through a co-calcination process to form the composite CFO/CNs, which exhibited remarkable efficacy in the degradation of various organic pollutants through the combination of photocatalysis and Fenton-like process synergistically, exemplified by the representative case of tetracycline hydrochloride (TCH, 200 mL, 50 mg/L). Specifically, under 1 mM of peroxymonosulfate (PMS) and illumination conditions, 50 mg of 1CFO/9CNs achieved a TCH removal ratio of ∼90% after 60 min of treatment. Furthermore, this work comprehensively investigated the influence of various factors, including catalyst and PMS dosages, solution pH, and the presence of anions and humate, on the degradation efficiency of pollutants. Besides, quenching experiments and EPR tests confirmed the establishment of an S-scheme heterojunction between CNs and CFO, which facilitated the effective spatial separation of photoexcited charge carriers and preserved the potent redox potential of photogenerated electrons and holes. This work offers a valuable reference for the integration of photocatalysis with the PMS-based Fenton-like process.[Abstract] [Full Text] [Related] [New Search]