These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Adaptive bias-variance trade-off in advantage estimator for actor-critic algorithms. Author: Chen Y, Zhang F, Liu Z. Journal: Neural Netw; 2024 Jan; 169():764-777. PubMed ID: 37981458. Abstract: Actor-critic methods are leading in many challenging continuous control tasks. Advantage estimators, the most common critics in the actor-critic framework, combine state values from bootstrapping value functions and sample returns. Different combinations balance the bias introduced by state values and the variance returned by samples to reduce estimation errors. The bias and variance constantly fluctuate throughout training, leading to different optimal combinations. However, existing advantage estimators usually use fixed combinations that fail to account for the trade-off between minimizing bias and variance to find the optimal estimate. Our previous work on adaptive advantage estimation (AAE) analyzed the sources of bias and variance and offered two indicators. This paper further explores the relationship between the indicators and their optimal combination through typical numerical experiments. These analyses develop a general form of adaptive combinations of state values and sample returns to achieve low estimation errors. Empirical results on simulated robotic locomotion tasks show that our proposed estimators achieve similar or superior performance compared to previous generalized advantage estimators (GAE).[Abstract] [Full Text] [Related] [New Search]