These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Preoperative CT radiomics of esophageal squamous cell carcinoma and lymph node to predict nodal disease with a high diagnostic capability.
    Author: Wu YP, Wu L, Ou J, Cao JM, Fu MY, Chen TW, Ouchi E, Hu J.
    Journal: Eur J Radiol; 2024 Jan; 170():111197. PubMed ID: 37992611.
    Abstract:
    PURPOSE: To develop CT radiomics models of resectable esophageal squamous cell carcinoma (ESCC) and lymph node (LN) to preoperatively identify LN+. MATERIALS AND METHODS: 299 consecutive patients with ESCC were enrolled in the study, 140 of whom were LN+ and 159 were LN-. Of the 299 patients, 249 (from the same hospital) were randomly divided into a training cohort (n = 174) and a test cohort (n = 75). The remaining 50 patients, from a second hospital, were assigned to an external validation cohort. In the training cohort, preoperative contrast-enhanced CT radiomics features of ESCC and LN were extracted, then integrated with clinical features to develop three models: ESCC, LN and combined. The performance of these models was assessed using area under receiver operating characteristic curve (AUC), and F-1 score, which were validated in both the test cohort and external validation cohort. RESULTS: An ESCC model was developed for the training cohort utilizing the 8 tumor radiomics features, and an LN model was constructed using 9 nodal radiomics features. A combined model was constructed using both ESCC and LN extracted features, in addition to cT stage and LN+ distribution. This combined model had the highest predictive ability among the three models in the training cohort (AUC = 0.948, F1-score = 0.878). The predictive ability was validated in both the test and external validation cohorts (AUC = 0.885 and 0.867, F1-score = 0.816 and 0.773, respectively). CONCLUSION: To preoperatively determine LN+, the combined model is superior to models of ESCC and LN alone.
    [Abstract] [Full Text] [Related] [New Search]