These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Influence of Grain Size on Dielectric Behavior in Lead-Free 0.5 Ba(Zr0.2Ti0.8)O3-0.5 (Ba0.7Ca0.3)TiO3 Ceramics. Author: Ene VL, Lupu VR, Condor CV, Patru RE, Hrib LM, Amarande L, Nicoara AI, Pintilie L, Ianculescu AC. Journal: Nanomaterials (Basel); 2023 Nov 12; 13(22):. PubMed ID: 37999288. Abstract: Fine-tuning of grain sizes can significantly influence the interaction between different dielectric phenomena, allowing the development of materials with tailored dielectric resistivity. By virtue of various synthesis mechanisms, a pathway to manipulate grain sizes and, consequently, tune the material's dielectric response is revealed. Understanding these intricate relationships between granulation and dielectric properties can pave the way for designing and optimizing materials for specific applications where tailored dielectric responses are sought. The experimental part involved the fabrication of dense BCT-BZT ceramics with different grain sizes by varying the synthesis (conventional solid-state reaction route and sol-gel) and consolidation methods. Both consolidation methods produced well-crystallized specimens, with Ba0.85Ca0.15O3Ti0.9Zr0.1 (BCTZ) perovskite as the major phase. Conventional sintering resulted in microstructured and submicron-structured BCT-BZT ceramics, with average grain sizes of 2.35 μm for the solid-state sample and 0.91 μm for the sol-gel synthesized ceramic. However, spark plasma sintering produced a nanocrystalline specimen with an average grain size of 67.5 nm. As the grain size decreases, there is a noticeable decrease in the maximum permittivity, a significant reduction in dielectric losses, and a shifting of the Curie temperature towards lower values.[Abstract] [Full Text] [Related] [New Search]