These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis and Characterization of Zinc/Iron Composite Oxide Heterojunction Porous Anode Materials for High-Performance Lithium-Ion Batteries.
    Author: Wang R, Wang Y, Xiong W, Liu J, Li H.
    Journal: Molecules; 2023 Nov 19; 28(22):. PubMed ID: 38005387.
    Abstract:
    Environmental pollution caused by the use of fossil fuels is becoming increasingly serious, necessitating the adoption of clean energy solutions. Lithium-ion batteries (LIBs) have attracted great attention due to their high energy density and currently occupy a dominant commercial position. Metal oxide materials have emerged as promising anode materials for the next generation of LIBs, thanks to their high theoretical capacity. However, the practical application of these materials is hindered by their substantial volume expansion during lithium storage and poor electrical conductivity. In this work, a zinc/iron bimetallic hybrid oxide composite, ZnO/ZnFe2O4/NC, is prepared using ZIF-8 as a precursor (ZIF-8, one of the metal organic frameworks). The N-doped porous carbon composite improves the volume change and optimizes the lithium-ion and electron transport. Meanwhile, the ZnFe2O4 and ZnO synergistically enhance the electrochemical activity of the anode through the built-in heterojunction to promote the reaction kinetics at the interface. As a result, the material delivers an excellent cycling performance of 604.7 mAh g-1 even after 300 cycles of 1000 mA g-1. This study may provide a rational design for the heterostructure and doping engineering of anodes for high-performance lithium-ion batteries.
    [Abstract] [Full Text] [Related] [New Search]