These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular Engineering Powered Dual-Readout Point-of-Care Testing for Sensitive Detection of Escherichia coli O157:H7.
    Author: Zhang G, Huang Z, Hu L, Wang Y, Deng S, Liu D, Peng J, Lai W.
    Journal: ACS Nano; 2023 Dec 12; 17(23):23723-23731. PubMed ID: 38009547.
    Abstract:
    Escherichia coli O157:H7 (E. coli O157:H7) has become one of the major threats to public health and food safety. However, the culture method as a gold standard for the detection of E. coli O157:H7 requires laborious operations and a long processing time. Herein, we developed a dual-readout aggregation-induced emission nanoparticle-based lateral flow immunoassay (LFIA) for sensitive detection of E. coli O157:H7 to achieve a qualitative and quantitative assay for satisfying the applications under varying scenarios. 2,3-Bis(4-(bis(4-(tert-butyl)phenyl)amino)phenyl)fumaronitrile (BAPF), an aggregation-induced emission luminogen, was designed to achieve a strong molar extinction coefficient (3.0 × 104 M-1 cm-1) and high quantum yield (33.28%), which was further verified by a large rotation angle and low energy gap. Subsequently, BAPFs were integrated into a nanostructured system to form excellent water-soluble nanoparticles (BAPFNPs) for the detection of E. coli O157:H7 with colorimetric and fluorescent readout. The designed BAPFNPs-based LFIA (BAPFNPs-LFIA) exhibited nearly qualitative ability with gold nanoparticles-LFIA (AuNPs-LFIA) and a 9 times enhancement compared with quantum beads-LFIA (QBs-LFIA) in quantitative aspect. Especially, FL-BAPFNPs-LFIA could detect E. coli O157:H7 earlier than QBs-LFIA and AuNPs-LFIA when samples with low E. coli O157:H7 concentrations were cultured. Overall, the proposed strategy revealed that versatile BAPFNPs have great potential as reporters for dual-readout ability and enhancing detection sensitivity for rapid and accurate pathogenic bacteria assay.
    [Abstract] [Full Text] [Related] [New Search]