These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Modulation of the hypoxic toxicity and binding of misonidazole by glucose. Author: Ling LL, Sutherland RM. Journal: Br J Cancer; 1986 Dec; 54(6):911-7. PubMed ID: 3801286. Abstract: The hypoxic toxicity and binding of misonidazole (MISO) requires metabolic reduction. The influence of glucose on the toxicity and binding of MISO was studied because glucose is a major substrate for the supply of NADPH through the hexose monophosphate pathway (HMP). Hypoxic EMT6/Ro cells (10(6) cells ml-1) were incubated with varying concentrations of glucose (0.015 mM to 5 mM). The initial rate of glucose transport was found to increase linearly with the extracellular glucose concentration up to 5 mM (0.038 nmol glucose 10(-6) cells sec-1). About 1.5 percent of the total glucose consumed went through the HMP for hypoxic cells in 5 mM glucose. The rate of HMP progressively decreased as the glucose concentration was lowered. When exposed to 5 mM MISO, the HMP was stimulated. This stimulation declined from 3.2 times in 5 mM glucose to barely detectable below 1 mM glucose. Both the hypoxic toxicity and binding of 5 mM MISO to the acid-insoluble fraction were decreased as the concentration of glucose was lowered. Below 0.5 mM glucose, no significant toxicity due to MISO was observed. There was an initial burden of 2.5 nmol MISO 10(-6) cells bound with little toxicity. After this initial burden, the terminal slope was 1.8 mol MISO bound 10(-6) cells (63 percent decrease in the surviving fraction). These results indicate that glucose concentrations lower than 5 mM can decrease the HMP rate and the toxicity and binding of MISO to hypoxic cells, and imply that calibration curves with normal and low glucose concentrations should be used to estimate the possible hypoxic fraction when MISO is used as a hypoxic probe in vivo.[Abstract] [Full Text] [Related] [New Search]