These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electrocatalytic nitrate-to-ammonia conversion on CoO/CuO nanoarrays using Zn-nitrate batteries. Author: Chen S, Qi G, Yin R, Liu Q, Feng L, Feng X, Hu G, Luo J, Liu X, Liu W. Journal: Nanoscale; 2023 Dec 14; 15(48):19577-19585. PubMed ID: 38014771. Abstract: Zn-NO3- batteries can generate electricity while producing NH3 in an environmentally friendly manner, making them a very promising device. However, the conversion of NO3- to NH3 involves a proton-assisted 8-electron (8e-) transfer process with a high kinetic barrier, requiring high-performance catalysts to realize the potential applications of this technology. Herein, we propose a heterostructured CoO/CuO nanoarray electrocatalyst prepared on a copper foam (CoO/CuO-NA/CF) that can electrocatalytically and efficiently convert NO3- to NH3 at low potential and achieves a maximum NH3 yield of 296.9 μmol h-1 cm-2 and the Faraday efficiency (FE) of 92.9% at the -0.2 V vs. reversible hydrogen electrode (RHE). Impressively, Zn-NO3- battery based on the monolithic CoO/CuO-NA/CF electrode delivers a high NH3 yield of 60.3 μmol h-1 cm-2, FENH3 of 82.0%, and a power density of 4.3 mW cm-2. This study provides a paradigm for heterostructured catalyst preparation for the energy-efficient production of NH3 and simultaneously generating electrical energy.[Abstract] [Full Text] [Related] [New Search]