These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hybrid epoxy/Br inhibitor in corrosion protection of steel: experimental and theoretical investigations. Author: El-Aouni N, Dagdag O, Amri AE, Kim H, Dkhireche N, Elbachiri A, Berdimurodov E, Berisha A, Rafik M. Journal: Environ Sci Pollut Res Int; 2024 Jan; 31(1):1033-1049. PubMed ID: 38030847. Abstract: The corrosion of carbon steel infrastructure in acidic environments poses significant economic and safety challenges. Traditional inhibitors such as chromates are being phased out due to toxicity concerns. Thus, there is a need to develop effective and sustainable green alternatives. In this work, we evaluated an epoxy-based inhibitor, bisphenol A tetrabromo dipropoxy dianiline tetraglycidyl ether (TGEDADPTBBA), for protecting carbon steel against corrosion in 1 M hydrochloric acid. An integrated experiment-computation approach was employed. Polarization curves and electrochemical impedance spectroscopy were used to assess the inhibition efficiency and mechanism of TGEDADPTBBA. Quantum chemical calculations and molecular dynamics simulations provided atomic-level insights into adsorption behavior. Scanning electron microscopy with energy-dispersive X-ray spectroscopy characterized the surface morphology. The results showed that TGEDADPTBBA acted as a highly effective mixed-type inhibitor, achieving over 95% inhibition efficiency at a 10-3 M concentration. It suppressed corrosion currents while increasing the charge transfer resistance. Theoretical studies revealed that TGEDADPTBBA adsorbed onto steel surfaces via both electrostatic and van der Waals interactions. This stable adsorption facilitated the formation of a protective barrier layer, as observed experimentally. Notably, our work demonstrated the synergistic potential of combining experimental corrosion testing with computational modeling to develop structure-property relationships for innovative inhibitor design. This integrated approach offers insight into inhibition mechanisms and presents TGEDADPTBBA as an attractive green corrosion inhibitor alternative for industrial applications.[Abstract] [Full Text] [Related] [New Search]