These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: MicroRNA3650 Promotes Gastric Cancer Proliferation and Migration through the PTEN/PI3K-AKT-mTOR and Hippo Pathways. Author: Yang X, Wen J, He Q, Wang S, Ruan Q, Liao Q, He J, Fang S, Liu C, Tang H. Journal: Protein Pept Lett; 2023; 30(11):966-973. PubMed ID: 38031771. Abstract: BACKGROUND: Gastric cancer (GC) is a malignant tumor with seriously poor outcomes. Studies have shown that microRNAs (miRNAs) play an omnifarious regulatory effect in GC. However, the role of miR-3650 in the progression of GC is not well known. METHODS: In this study, miR-3650 expression and its clinical significance were determined using clinical specimens. The biological functions of miR-3650 were determined in gastric cancer cell lines through CCK-8, cell scratch, and transwell experiments. Bioinformatics predictions, combined with Western blot experiments, were employed to explore its downstream molecular targets. RESULTS: We observed that miR-3650 was overexpressed in GC specimens and most cell lines, i.e., 77.8% (MKN28, SNU1, AGS, MKN45, N87, BGC823 and SGC7901). The overexpression correlated with advanced T-stage, N-stage, M-stage, and TNM-stage. Furthermore, miR-3650 promoted the proliferation and migration of gastric cancer cells, and its overexpression promoted the PI3K-AKT-mTOR pathway and inhibited the PTEN and hippo pathways. The potassium ion signaling pathway was also involved in the biological process of miR-3650 promoting cancer. CONCLUSION: Therefore, we concluded that miR-3650/PTEN/PI3K-AKT-mTOR and miR-3650/hippo pathways are vital in the progression of GC and serve as novel targets for GC therapy.[Abstract] [Full Text] [Related] [New Search]