These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Combined effects of hypoxia and ammonia-N exposure on the immune response, oxidative stress, tissue injury and apoptosis of hybrid grouper (Epinephelus fuscoguttatus♀×E. lanceolatus♂). Author: Cao J, Mei J, Xie J. Journal: Environ Sci Pollut Res Int; 2024 Jan; 31(1):845-856. PubMed ID: 38032527. Abstract: In order to investigate the simultaneous exposure to hypoxia and ammonia-N on oxidative stress, immune response, and apoptosis of the hybrid grouper, 120 healthy groupers were selected for hypoxia and/or ammonia-N exposure experiment. The fish were divided into four experimental groups: hypoxia and ammonia-N group, hypoxia group, ammonia-N group, and control group. The results demonstrated that ammonia-N and hypoxia exposures induced the superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities increased first and then decreased, and malondialdehyde (MDA) accumulated. Additionally, antioxidant genes (SOD, CAT, GSH-Px, HSP70, and HSP90), apoptosis genes (p53, bax, caspase 3, caspase 8, and caspase 9), and inflammatory genes (TNF-α, IL-1β, IL-6, and IL-8) were upregulated by hypoxia and ammonia-N exposure. Severe inflammatory features were noticed in fish under hypoxia and ammonia-N co-exposure and speculating that the p53-bax pathway may induce apoptosis in hybrid groupers. Furthermore, hybrid grouper exposed to hypoxia or ammonia-N revealed some abnormalities in liver histology, with combined exposure resulting in the most severe liver tissue lesions. In summary, the hypoxia and ammonia-N co-exposure induced oxidative stress, accelerating the cell damage and activated inflammation and apoptosis.[Abstract] [Full Text] [Related] [New Search]