These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fast Energy Storage of SnS2 Anode Nanoconfined in Hollow Porous Carbon Nanofibers for Lithium-Ion Batteries. Author: Liang F, Dong H, Dai J, He H, Zhang W, Chen S, Lv D, Liu H, Kim IS, Lai Y, Tang Y, Ge M. Journal: Adv Sci (Weinh); 2024 Jan; 11(4):e2306711. PubMed ID: 38041500. Abstract: The development of conversion-typed anodes with ultrafast charging and large energy storage is quite challenging due to the sluggish ions/electrons transfer kinetics in bulk materials and fracture of the active materials. Herein, the design of porous carbon nanofibers/SnS2 composite (SnS2 @N-HPCNFs) for high-rate energy storage, where the ultrathin SnS2 nanosheets are nanoconfined in N-doped carbon nanofibers with tunable void spaces, is reported. The highly interconnected carbon nanofibers in three-dimensional (3D) architecture provide a fast electron transfer pathway and alleviate the volume expansion of SnS2 , while their hierarchical porous structure facilitates rapid ion diffusion. Specifically, the anode delivers a remarkable specific capacity of 1935.50 mAh g-1 at 0.1 C and excellent rate capability up to 30 C with a specific capacity of 289.60 mAh g-1 . Meanwhile, at a high rate of 20 C, the electrode displays a high capacity retention of 84% after 3000 cycles and a long cycle life of 10 000 cycles. This work provides a deep insight into the construction of electrodes with high ionic/electronic conductivity for fast-charging energy storage devices.[Abstract] [Full Text] [Related] [New Search]