These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Catalytic upcycling of post-consumer multilayered plastic packaging wastes for the selective production of monoaromatic hydrocarbons.
    Author: Pal SK, Prabhudesai VS, Vinu R.
    Journal: J Environ Manage; 2024 Feb; 351():119630. PubMed ID: 38043308.
    Abstract:
    In order to obtain extended storage life of food-grade materials and better barrier properties against environmental factors, a multilayer plastic packaging (MLP) is often used. The multilayer packaging plastics are labelled as "other" (SPI#7) category, and are manufactured with a combination of barrier plastics, rigid plastics and printing surface. Owing to their complex composition and difficulty in separating the layers of MLP, its mechanical recycling is challenging. In this study, MLP wastes (MLPWs) were collected from zero-waste garbage collection center of IIT Madras, India, and thoroughly characterized to determine their composition and plastic types. MLPWs were characterized using various physico-chemical methods such as thermogravimetric/differential scanning calorimetric analysis, Fourier transform infrared spectroscopy, bomb calorimetry, and proximate and ultimate analyses. The MLPWs were mainly made up of polyethylene (PE) and polyethylene terephthalate (PET). Further, the non-catalytic and zeolite-catalyzed fast pyrolysis of these MLPWs were studied using analytical pyrolysis coupled with gas chromatograph/mass spectrometer (Py-GC/MS). The non-catalytic fast pyrolysis of MLPWs primarily produced a mixture of aliphatic and alicyclic hydrocarbons, while zeolite catalyzed fast pyrolysis resulted in the formation of mono-aromatic hydrocarbons (MAHs). The activity of HZSM-5, zeolite Y (HY) and zeolite beta (Hβ) catalysts were evaluated, and the salient products were quantified. The yields of MAHs like benzene, toluene, ethylbenzene and xylene using the zeolites followed the trend: HZSM-5 (14.9 wt%) > HY (8.1 wt%) > Hβ (7.8 wt%), at 650 °C. The use of HZSM-5 resulted in highest yield of MAHs, viz. 16.1 wt%, at the optimum temperature of 550 °C and MLPW-to-catalyst ratio of 1:15 (w/w). The superior activity of HZSM-5 is due to its nominal acidity and larger pore size of 4.24 nm, as compared to HY and Hβ. The MAHs yield from three other types of MLPWs varied in the range of 9-16 wt%. The present study demonstrates a promising pathway for the catalytic upcycling of highly heterogeneous MLPWs in the context of circular economy.
    [Abstract] [Full Text] [Related] [New Search]