These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Physiological and Biochemical Adaptations to a Sport-Specific Sprint Interval Training in Male Basketball Athletes.
    Author: Song T, Jilikeha, Deng Y.
    Journal: J Sports Sci Med; 2023 Dec; 22(4):605-613. PubMed ID: 38045752.
    Abstract:
    The present study compared the effects of incorporating traditional sprint interval training (SIT) or basketball-specific SIT (SSIT) into typical off-season training of male basketball players. Adaptations to and effect size (EF) of interventions on aerobic fitness [evaluated using Yo-Yo intermittent recovery test level-1 (Yo-Yo IR1)], change of direction [T-test (TT) and Illinois agility test (IAT)], vertical jump (VJ), standing long jump (SLJ), linear speed, maximal strength [one repetition maximum test in leg press (1RMLP)], and hormonal status were examined. Male athletes (age = 25.7 ± 2.0 years; height = 188.1 ± 7.9 cm; body mass = 85.9 ± 8.0 kg) were randomly assigned to one of three groups of SIT (n = 10): three sets of 10 × 15 sec all-out intervals with 1:1 recovery between bouts and a 3-min recovery between sets; SSIT (n = 10): the same intervals as SIT + basketball-specific ball drills while running; and CON (n = 10): two sessions per week of regular basketball technical and tactical drills. SIT and SSIT resulted in significant changes compared with baseline in maximal oxygen uptake (4.9%, ES = 2.22 vs. 6%, ES = 2.57), TT (-1.8%, ES =-0.46 vs. -2.7%, ES = -1.14), IAT (-4.5%, ES = -2.01 vs. -5.4%, ES = -1.93), VJ (7.5%, ES = 0.58 vs. 12%, ES = 0.95), linear sprint time (-2.9%, ES = -0.32 vs. -4.3%, ES = -0.69), Yo-Yo IR1 (18.5%, ES = 2.19 vs. 23.7%, ES = 2.56), serum testosterone (28%, ES = 1.52 vs. 29.7%, ES = 1.59), and cortisol (-6.53%, ES = -0.37 vs. -12.06%, ES = -0.64). Incorporating SIT and SSIT into typical off-season basketball training triggers adaptive mechanisms that enhance aerobic and anaerobic performance in male basketball players. The effect size values indicate more significant effects of SSIT than SIT in most physiological and sport-specific adaptations. Such a superior effect could be attributed to the more basketball-specific movement pattern of the SSIT. Such interventions can be used by the coaches and athletes for designing the training load and for better training adaptations throughout the training seasons and competition periods.
    [Abstract] [Full Text] [Related] [New Search]