These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biochemical characterization of glutaminase-free L-asparaginases from Himalayan Pseudomonas and Rahnella spp. for acrylamide mitigation. Author: Patial V, Kumar S, Joshi R, Singh D. Journal: Int J Biol Macromol; 2024 Feb; 257(Pt 2):128576. PubMed ID: 38048933. Abstract: L-asparaginase having low glutaminase activity is important in clinical and food applications. Herein, glutaminase-free L-asparaginase (type I) coding genes from Pseudomonas sp. PCH182 (Ps-ASNase I) and Rahnella sp. PCH162 (Rs-ASNase I) was amplified using gene-specific primers, cloned into a pET-47b(+) vector, and plasmids were transformed into Escherichia coli (E. coli). Further, affinity chromatography purified recombinant proteins to homogeneity with monomer sizes of ~37.0 kDa. Purified Ps-ASNase I and Rs-ASNase I were active at wide pHs and temperatures with optimum activity at 50 °C (492 ± 5 U/mg) and 37 °C (308 ± 4 U/mg), respectively. Kinetic constant Km and Vmax for L-asparagine (Asn) were 2.7 ± 0.06 mM and 526.31 ± 4.0 U/mg for Ps-ASNase I, and 4.43 ± 1.06 mM and 434.78 ± 4.0 U/mg for Rs-ASNase I. Circular dichroism study revealed 29.3 % and 24.12 % α-helix structures in Ps-ASNase I and Rs-ASNase I, respectively. Upon their evaluation to mitigate acrylamide formation, 43 % and 34 % acrylamide (AA) reduction were achieved after pre-treatment of raw potato slices, consistent with 65 % and 59 % Asn reduction for Ps-ASNase I and Rs-ASNase I, respectively. Current findings suggested the potential of less explored intracellular L-asparaginase in AA mitigation for food safety.[Abstract] [Full Text] [Related] [New Search]