These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of age and noise on tympanal displacement in the Desert Locust. Author: Austin TT, Woodrow C, Pinchin J, Montealegre-Z F, Warren B. Journal: J Insect Physiol; 2024 Jan; 152():104595. PubMed ID: 38052320. Abstract: Insect cuticle is an evolutionary-malleable exoskeleton that has specialised for various functions. Insects that detect the pressure component of sound bear specialised sound-capturing tympani evolved from cuticular thinning. Whilst the outer layer of insect cuticle is composed of non-living chitin, its mechanical properties change during development and aging. Here, we measured the displacements of the tympanum of the desert Locust, Schistocerca gregaria, to understand biomechanical changes as a function of age and noise-exposure. We found that the stiffness of the tympanum decreases within 12 h of noise-exposure and increases as a function of age, independent of noise-exposure. Noise-induced changes were dynamic with an increased tympanum displacement to sound within 12 h post noise-exposure. Within 24 h, however, the tone-evoked displacement of the tympanum decreased below that of control Locusts. After 48 h, the tone-evoked displacement of the tympanum was not significantly different to Locusts not exposed to noise. Tympanal displacements reduced predictably with age and repeatably noise-exposed Locusts (every three days) did not differ from their non-noise-exposed counterparts. Changes in the biomechanics of the tympanum may explain an age-dependent decrease in auditory detection in tympanal insects.[Abstract] [Full Text] [Related] [New Search]