These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effect of migration on transmission of Wolbachia in Nilaparvata lugens. Author: Liu Z, Zhou T. Journal: Math Biosci Eng; 2023 Nov 06; 20(11):20213-20244. PubMed ID: 38052643. Abstract: Brown planthopper Nilaparvata lugens, which can transmit rice ragged stunt virus, is a serious and damaging pest to rice plants. Rice plants can protect themselves from the associated diseases of N.lugens by either suppressing or replacing N.lugens by releasing N.lugens infected by a special strain of WolbachiawStri. The long-distance migration habit of N.lugens is one of the important precursors leading up to the large-scale occurrence of N.lugens. To study the effect of migration on the transmission of Wolbachia in N.lugens, a Wolbachia spreading dynamics model with migration of N.lugens between two patches is put forward. The existence and local stability conditions of equilibrium points of the system and its subsystems are obtained. Moreover, the effects of migration on the dynamic properties and the control of N.lugens are analyzed; the results show that the system can exhibit a bistable phenomenon, and the migration can change the stability of equilibrium infected with wStri from stable to unstable. The quantitative control methods for the migration of the insect N.lugens are proposed, which provide a theoretical guidance for future field experiments. Lastly, we use the Markov chain Monte Carlo (MCMC) method to estimate the parameters of the wild N.lugens migration model based on limited observational data; the numerical simulation results show that migration can increase the quantity of N.lugens, which is consistent with the relevant experimental results.[Abstract] [Full Text] [Related] [New Search]