These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Prenatal exposure to low-dose di-(2-ethylhexyl) phthalate (DEHP) induces potentially hepatic lipid accumulation and fibrotic changes in rat offspring.
    Author: Su HY, Lai CS, Lee KH, Chiang YW, Chen CC, Hsu PC.
    Journal: Ecotoxicol Environ Saf; 2024 Jan 01; 269():115776. PubMed ID: 38056127.
    Abstract:
    Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer that is widely used to enhance the flexibility and durability of various products. As an endocrine disruptor, DEHP can interfere with normal hormonal functions, posing substantial health risks to organisms. Given the critical role of the liver in DEHP metabolism, we investigated potential liver damage in offspring induced by prenatal exposure to low doses of DEHP in Sprague Dawley rats. Pregnant rats were divided into three groups and administered 20 or 200 μg/kg/day of DEHP or corn oil vehicle control via oral gavage from gestation days 0-20. Male rat offspring were euthanized on postnatal day 84, and blood and liver specimens were collected for analysis. We observed fibrotic changes in the livers of the exposed groups, accompanied by the proliferation and activation of hepatic stellate cells and upregulated expression of TGF-B and collagen 1A1. Additionally, an inflammatory response, characterized by increased macrophage infiltration and elevated levels of pro-inflammatory cytokines, was evident. Third, hepatic and serum triglyceride and serum cholesterol were notably increased, along with upregulated expression of lipid metabolism-related proteins, such as sterol regulatory element-binding protein-1c, acetyl-CoA carboxylase, fatty acid synthase, and diacylglycerol O-acyltransferase 1, particularly in the low-dose group. These results suggest that prenatal exposure to DEHP can disrupt lipid metabolism, resulting in hepatic lipid accumulation in the offspring. This exposure may also induce an inflammatory response that contributes to the development of liver fibrosis. Thus, even at relatively low doses, such exposure can precipitate latent liver damage in offspring.
    [Abstract] [Full Text] [Related] [New Search]