These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Thioamide substrate probes of metal-substrate interactions in carboxypeptidase A catalysis.
    Author: Bond MD, Holmquist B, Vallee BL.
    Journal: J Inorg Biochem; 1986; 28(2-3):97-105. PubMed ID: 3806099.
    Abstract:
    Three thioamide peptides in which the oxygen atom of the scissile peptide bond is replaced by sulfur (denoted by (= S)) were synthesized and found to be good, convenient substrates for carboxypeptidase A. The thioamide bond absorbs strongly in the ultraviolet region, and enzymatic hydrolysis is monitored easily using a continuously recording spectrophotometric assay. The reaction follows Michaelis-Menten kinetics with kcat values of 68, 9.0, and 3.7 sec-1 and Km values of 0.83, 0.81, and 0.53 mM for Z-Glu-Phe(= S)-Phe, Z-Gly-Ala(= S)-Phe, and Z-Phe(= S)-Phe, respectively. Activities of the thioamides and their oxygen amide analogs were determined with a series of metal-substituted carboxypeptidases. The Cd(II), Mn(II), Co(II), and Ni(II) enzymes exhibit 30%-35%, 60%-85%, 150%-190%, and 40%-55% of the Zn(II) enzyme activity with the amide substrates; this compares with 240%-970%, 0%-15%, 340%-840%, and 30%-140% of the Zn(II) activity, respectively, with the thioamides. The activity of the Cu(II) and Hg(II) enzymes is less than 3% toward all substrates. Cadmium, a thiophilic metal, yields an enzyme which is exceedingly active with the thioamides; the kcat/Km values are 2.4-9.7-fold higher than with Zn(II) carboxypeptidase. In contrast, Mn(II), which has a relatively low affinity for sulfur, yields an enzyme with correspondingly low activity toward the thioamides. The results are consistent with a mechanism for peptide bond hydrolysis in which the metal atom interacts with the substrate carbonyl atom during catalysis.
    [Abstract] [Full Text] [Related] [New Search]