These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Integrating transcriptomics and biochemical analysis to understand the interactive mechanisms of the coexisting exposure of nanoplastics and erythromycin on Chlorella pyrenoidosa. Author: Yang W, Gao P, Liu D, Wang W, Wang H, Zhu L. Journal: Chemosphere; 2024 Feb; 349():140869. PubMed ID: 38061561. Abstract: Nanoplastics and antibiotics frequently co-exist in water polluted by algal blooms, but little information is available about interaction between substances. Erythromycin, as a representative of antibiotics, has been frequently detected in aquatic environments. This investigation attempted to reveal the interaction mechanism of nanoplastics and erythromycin on Chlorella pyrenoidosa. Results demonstrated that the joint toxicity of erythromycin and nanoplastics was dynamic and depended on nanoplastics concentration. Antagonistic effects of 1/2 or 1 EC50 erythromycin and nanoplastic concentration (10 mg/L) on the growth of C. pyrenoidosa was observed. The joint toxicity of 1/2 or 1 EC50 erythromycin and nanoplastic concentration (50 mg/L) was initially synergistic during 24-48 h and then turned to antagonistic during 72-96 h. Consequently, antagonistic effect was the endpoint for joint toxicity. Integration of transcriptomics and physiological biochemical analysis indicated that the co-existence of nanoplastics and erythromycin affected the signal transduction and molecular transport of algal cell membrane, induced intracellular oxidative stress, and hindered photosynthetic efficiency. Overall, this study provided a theoretical basis for evaluating the interactive mechanisms of nanoplastics and antibiotics.[Abstract] [Full Text] [Related] [New Search]