These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Assessment of heavy metal accumulation and health risk in three essential edible weeds grown on wastewater irrigated soil. Author: Abdelgawad ZA, Abd El-Wahed MN, Ahmed AA, Madbouly SM, El-Sayyad GS, Khalafallah AA. Journal: Sci Rep; 2023 Dec 08; 13(1):21768. PubMed ID: 38066115. Abstract: The main problem facing Egypt recently is the shortage of available water resources. Therefore, farmers resort to use wastewater for irrigation. So, the present work aims to assess the impacts of wastewater irrigation on the productivity of three edible weeds (Cichorium endivia, Sonchus oleraceous and Beta vulgaris) and its effect on the nutritional value of plants and its risk on human health. This study will focus on Shibin Al Kanater region, and the physicochemical characteristics of drainage water, canal water, drainage water-irrigated soils and canal-irrigated soils were estimated. The vegetative and traits of edible weeds were determined including their photosynthetic pigments, organic and inorganic nutrients content, and heavy metals content. The health risk index (HRI) associated with consumption of polluted plants was created using the estimated exposure factor of a crop to the oral reference dosage of the toxic metal. The main results showed that biomass productivity of S. oleraceous, B. vulgaris and C. endivia increased due to drainage water irrigation with increasing percentage as 27.9, 19.6, and 19.1%, respectively. Irrigation with drainage water significantly increased the photosynthetic pigments of edible weeds. Irrigation with drainage water increased carbohydrate content, crude protein, total soluble sugar, and gross energy in all studied weeds. C. endivia, S. oleraceus and B. vulgaris plants irrigated with canal and drainage water could accumulate Fe, Zn, Cu, and Co in their roots. C. endivia, S. oleraceus and B. vulgaris plants irrigated with canal water indicated HRI more than the unit for Mn, Cu, Pb, and Cd. This research advises that regulation be put in place to prohibit irrigation using untreated drainage and to restrict the discharge of industrial, domestic, and agricultural wastewater into irrigation canals.[Abstract] [Full Text] [Related] [New Search]