These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Substrate thermostabilization of soluble and immobilized glucoamylase].
    Author: Klesov AA, Gerasimas VB.
    Journal: Biokhimiia; 1979 Jun; 44(6):1084-92. PubMed ID: 380665.
    Abstract:
    A new kinetic approach to the study of enzyme thermal inactivation in the presence of a substrate, which influences the rate of inactivation has been developed. The method was applied to investigation of inactivation kinetics of soluble and porous silica-immobilized glucoamylase. It was found that the binding of a substrate (maltose or maltodextrines Star-Dri 24-R) increases the thermal stability of glucoamylase, the stabilizing effect being more pronounced in the case of the soluble enzyme (40-fold stabilization) as compared to the immobilized one (15-fold stabilization). The stabilizing effect does not depend on the length of the substrate (maltose, d. p. 2 or dextrines, d. p. 7). Glucose, a product of the enzymatic hydrolysis, has a much lower stabilizing effect. It was concluded that the main role in the glucoamylase thermostabilization is played by the substrate stabilization rather than by the immobilization itself (3-fold stabilization). However, a combined effect of thermostabilization of glucoamylase due to both immobilization and/or substrate stabilization is restricted by the same limit of value for immobilized and soluble enzymes, which is equal to 40--50-fold in comparison with the soluble enzyme in the absence of the substrate.
    [Abstract] [Full Text] [Related] [New Search]