These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: VCIP135 associates with both the N- and C-terminal regions of p97 ATPase.
    Author: Nakayama S, Kondo H.
    Journal: J Biol Chem; 2024 Jan; 300(1):105540. PubMed ID: 38072049.
    Abstract:
    Two distinct p97ATPase-mediated membrane fusion pathways are required for Golgi and endoplasmic reticulum (ER) biogenesis, namely, the p97/p47 pathway and the p97/p37 pathway. p97 (VCP)/p47 complex-interacting protein p135 (VCIP135) is necessary for both of these pathways. Although VCIP135 is known to form a complex with p97 in the cytosol, the role of this complex in Golgi and ER biogenesis has remained unclear. In this study, we demonstrated that VCIP135 has two distinct p97-binding sites at its N- and C-terminal regions. In particular, the C-terminal binding site includes the SHP motif, which is also found in other p97-binding proteins, such as p47, p37, and Ufd1. We also clarified that VCIP135 binds to both the N- and C-terminal regions of p97; that is, the N- and C-terminal binding sites in VCIP135 interact with the C- and N-terminal regions of p97, respectively. These two interactions within the complex are synchronously controlled by the nucleotide state of p97. We next generated VCIP135 mutants lacking each of the p97-binding sites to investigate their functions in living cells and clarified that VCIP135 is involved in Golgi and ER biogenesis through its two distinct interactions with p97. VCIP135 is hence a unique p97-binding protein that functions by interacting with both the N-and C-terminal regions of p97, which strongly suggests that it plays crucial roles in p97-mediated events.
    [Abstract] [Full Text] [Related] [New Search]