These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Exploring the Potential of Carbonized Nano-Si within G@C@Si Anodes for Lithium-Ion Rechargeable Batteries.
    Author: Maddipatla R, Loka C, Lee KS.
    Journal: ACS Appl Mater Interfaces; 2023 Dec 20; 15(50):58437-58450. PubMed ID: 38079573.
    Abstract:
    This study presents the synthesis, characterization, and electrochemical performance evaluation of carbon@silicon (C@Si) and graphite@carbon@silicon (G@C@Si) nanocomposites as potential anode materials for lithium-ion batteries (LIBs). Employing a combination of mechanical milling and carbonization using citric acid, we developed nanocomposites exhibiting unique core-shell structures, as confirmed by detailed SEM and TEM analysis. The G@C@Si nanocomposite displayed superior electrochemical performance, delivering an initial discharge capacity of 1724 mAh g-1 and a high initial Coulombic efficiency of 87.37%. The nanocomposite demonstrated remarkable cycling durability with a discharge capacity of 1248 mAh g-1 over 200 cycles and an average Coulombic efficiency of 99.1% and high-capacity retention of about 83%. Notably, a high capacity of 1325 mAh g-1 was observed at a high 3C rate, and the electrode showed excellent resilience by rapidly recovering to a discharge capacity of 1637 mAh g-1 when the C rate was reduced back to 0.5C. Electrochemical impedance spectra revealed a reduced charge transfer resistance of approximately 43 Ω in the G@C@Si nanocomposite as compared to that of C@Si (∼56 Ω) and nano-Si (105 Ω), indicating enhanced lithium-ion diffusion due to the integration of graphite. Postcycle electrode analysis revealed excellent structural integrity, with minimized volume changes in both C@Si and G@C@Si. XPS studies revealed a thinner SEI layer formation in the G@C@Si electrode compared to C@Si. The C@Si core-shell formation through the citric acid treatment of nano-Si and integration of graphite by mechanical milling significantly boosts the electrochemical performance of the G@C@Si nanocomposite. These findings suggest that the G@C@Si nanocomposite offers immense potential for utilization in high-capacity and high-efficiency LIBs.
    [Abstract] [Full Text] [Related] [New Search]