These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tracking Bilateral Lower Limb Kinematics of Distance Runners on Treadmill Using a Single Inertial Measurement Unit. Author: Patra Y, Liu Q, Chan RHM, Thomson D, Chow DHK, Fuller B, Cheung RTH. Journal: Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082572. Abstract: Distance running related injuries are common, and many ailments have been associated with faulty posture. Conventional measurement of running kinematics requires sophisticated motion capture system in laboratory. In this study, we developed a wearable solution to accurately predict lower limb running kinematics using a single inertial measurement unit placed on the left lower leg. The running data collected from participants was used to train a model using long short-term memory (LSTM) neural networks with an inter-subject approach that predicted lower limb kinematics with an average accuracy of 80.2%, 85.8%, and 69.4% for sagittal hip, knee and ankle joint angles respectively for the ipsilateral limb. A comparable accuracy range was observed for the contralateral limb. The average RMSE (root mean squared error) of sagittal hip, knee and ankle were 8.76°, 13.13°, and 9.67° respectively for the ipsilateral limb. Analysis of contralateral limb kinematics was performed. The model established in this study can be used as a monitoring device to track essential running kinematics in natural running environments. Besides, the wearable solution can be an integral part of a real-time gait retraining biofeedback system for injury prevention and rehabilitation.[Abstract] [Full Text] [Related] [New Search]