These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A novel 2D intrinsic metal-free ferromagnetic semiconductor Si3C8 monolayer. Author: Luo Y, Li C, Zhong C, Li S. Journal: Phys Chem Chem Phys; 2024 Jan 03; 26(2):1086-1093. PubMed ID: 38098345. Abstract: Metal-free magnets, a special kind of ferromagnetic (FM) material, have evolved into an important branch of magnetic materials for spintronic applications. We herein propose a silicon carbide (Si3C8) monolayer and investigate its geometric, electronic, and magnetic properties by using first-principles calculations. The thermal and dynamical stability of the Si3C8 monolayer was confirmed by ab initio molecular dynamics and phonon dispersion simulations. Our results show that the Si3C8 monolayer is a FM semiconductor with a band gap of 1.76 eV in the spin-down channel and a Curie temperature of 22 K. We demonstrate that the intrinsic magnetism of the Si3C8 monolayer is derived from pz orbitals of C atoms via superexchange interactions. Furthermore, the half-metallic state in the FM Si3C8 monolayer can be induced by electron doping. Our work not only illustrates that carrier doping could manipulate the magnetic states of the FM Si3C8 monolayer but also provides an idea to design two-dimensional metal-free magnetic materials for spintronic applications.[Abstract] [Full Text] [Related] [New Search]