These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: PYCR2, induced by c-Myc, promotes the invasiveness and metastasis of breast cancer by activating AKT signalling pathway.
    Author: Wu G, Qin S, Gu K, Zhou Y.
    Journal: Int J Biochem Cell Biol; 2024 Jan; 166():106506. PubMed ID: 38101533.
    Abstract:
    BACKGROUND: Pyrroline-5-carboxylate reductase 2 (PYCR2) expression is aberrantly upregulated in colon cancer. However, the functions and underlying mechanisms of PYCR2 in breast cancer remain elusive. The primary objective of the present study was to elucidate the function of PYCR2 in breast cancer and investigate whether PYCR2 may be transcriptionally regulated by c-Myc to activate the AKT signaling pathway. METHODS: Immunohistochemical analysis was performed to examine the expression of PYCR2 in breast cancer and adjacent non-cancerous tissues. Western blot and RT-qPCR were utilized to detect PYCR2 expression in breast cancer cells. Cellular functionalities were evaluated through Transwell assays in vitro and lung metastasis formation assays in vivo. Moreover, the impact of PYCR2 on the activation of AKT signaling was determined through western blot and immunohistochemistry analysis. The transcriptional regulation of PYCR2 expression by c-Myc was evaluated via both western blot analysis and luciferase gene reporter assay. RESULTS: PYCR2 overexpression was noted in breast cancer. Silencing PYCR2 expression attenuated the invasive and metastatic abilities of breast cancer cells. Furthermore, the activation of the AKT signaling pathway is indispensable for the promotion of invasion and metastasis mediated by PYCR2. Lastly, the binding of c-Myc to the promoter sequence of PYCR2 resulted in the upregulation of PYCR2 transcription. CONCLUSION: Taken together, these results indicate that PYCR2 is transcriptionally regulated by c-Myc and promotes invasion and metastasis in breast cancer through the activation of the AKT pathway.
    [Abstract] [Full Text] [Related] [New Search]