These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Exosomes from adipose-derived stem cells alleviate premature ovarian failure via blockage of autophagy and AMPK/mTOR pathway.
    Author: Ren Y, He J, Wang X, Liang H, Ma Y.
    Journal: PeerJ; 2023; 11():e16517. PubMed ID: 38107591.
    Abstract:
    OBJECTIVE: The objective of this study was to investigate the effects and mechanisms of adipose-derived stem cell-derived exosome (ADSCs-Exo) in treating premature ovarian failure (POF). METHODS: We constructed a POF mouse model through intraperitoneal injection of cyclophosphamide, followed by the administration of the autophagy inhibitor 3-methyladenine (3-MA). Pathological injury, follicle stimulating hormone (FSH), malondialdehyde (MDA), reactive oxygen species (ROS), estradiol (E2), superoxide dismutase (SOD), granulosa cell (GC) apoptosis, and autophagy were assessed. Exosomes isolated from ADSCs were used to treat POF in mice. The AMPK-mTOR pathway and its proteins (p-AMPK and p-mTOR) were evaluated. A POF cell model was established using cyclophosphamide-treated human ovarian granulosa-like tumor (KGN) cells. We administered ADSCs-Exo and rapamycin to validate the mechanism of ADSCs-Exo against POF. RESULTS: In POF mice, 3-MA treatment attenuated pathological injuries, decreased FSH, MDA, and ROS levels, and increased E2 and SOD levels. 3-MA treatment also inhibited GC apoptosis and autophagy. ADSCs-Exo alleviated pathological injuries, improved ovarian morphology and function, and reduced oxidative stress in POF mice. ADSCs-Exo inhibited GC apoptosis and autophagy. ADSCs-Exo downregulated the expression of AMPK/mTOR pathway proteins (p-AMPK and p-mTOR). In the POF cell model, ADSCs-Exo and rapamycin inhibited AMPK/mTOR-mediated autophagy. CONCLUSION: ADSCs-Exo inhibits POF through the inhibition of autophagy and the AMPK/mTOR pathway. This study provides a potential target for the clinical treatment of POF.
    [Abstract] [Full Text] [Related] [New Search]