These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evaluation of the "Step-Ramp-Step" Protocol: Accurate Aerobic Exercise Prescription with Different Steps and Ramp Slopes.
    Author: Mackie MZ, Iannetta D, Keir DA, Murias JM.
    Journal: Med Sci Sports Exerc; 2024 May 01; 56(5):990-998. PubMed ID: 38109201.
    Abstract:
    PURPOSE: To assess whether: i) a lower amplitude constant-load MOD is appropriate to determine the mean response time (MRT); ii) the method accurately corrects the dissociation in the V̇O 2 -PO relationship during ramp compared with constant-load exercise when using different ramp slopes. METHODS: Eighteen participants (7 females) performed three SRS tests including: i) step-transitions into MOD from 20 to 50 W (MOD 50 ) and 80 W (MOD 80 ); and ii) slopes of 15, 30, and 45 W·min -1 . The V̇O 2 and PO at the gas exchange threshold (GET) and the corrected respiratory compensation point (RCP CORR ) were determined. Two to three 30-min constant-load trials evaluated the V̇O 2 and PO at the maximal metabolic steady state (MMSS). RESULTS: There were no differences in V̇O 2 at GET (1.97 ± 0.36, 1.99 ± 0.36, 1.95 ± 0.30 L·min -1 ), and RCP (2.81 ± 0.57, 2.86 ± 0.59, 2.84 ± 0.59) between 15, 30, and 45 W·min -1 ramps, respectively ( P > 0.05). The MRT in seconds was not affected by the amplitude of the MOD or the slope of the ramp (range 19 ± 10 s to 23 ± 20 s; P > 0.05). The mean PO at GET was not significantly affected by the amplitude of the MOD or the slope of the ramp (range 130 ± 30 W to 137 ± 30 W; P > 0.05). The PO at RCP CORR was similar for all conditions ((range 186 ± 43 W to 193 ± 47 W; P > 0.05). CONCLUSIONS: The SRS protocol accounts for the V̇O 2 MRT when using smaller amplitude steps, and for the V̇O 2 slow component when using different ramp slopes, allowing for accurate partitioning of the exercise intensity domains in a single test.
    [Abstract] [Full Text] [Related] [New Search]