These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Negative-carbon recycling of copper from waste as secondary resources using deep eutectic solvents. Author: Liu K, Wang M, Zhang Q, Dutta S, Zheng T, Valix M, Tsang DCW. Journal: J Hazard Mater; 2024 Mar 05; 465():133258. PubMed ID: 38113734. Abstract: Copper plays a crucial role in the low-carbon transformation of global communities with prevalent use of electric vehicles. This study proposed an environmentally friendly approach that utilizes a deep eutectic solvent (DES), choline chloride-ethylene glycol (ChCl-EG), as green solvent for the selective extraction of copper from scrap materials. With hydrogen peroxide as an oxidizing agent, the copper species from the printed circuit boards (PCBs) scraps were efficiently leached by the DES through oxidation-complexation reactions (conditions: 25 min, 20 °C, and 5 wt% H2O2). Molecular dynamics and density functional theory were performed to simulate the intricate cascade of interactions between copper species and hydrogen bond donors/acceptors of DES, providing insights into the mechanistic processes involved. Copper was selectively recovered from the DES leachate containing impurities (e.g., Pb2+, Sn2+, and Al3+) through electrodeposition via a diffusion-controlled reaction under a constant potential mode. A comprehensive life cycle assessment of the process demonstrated that the utilisation of DES in the extraction of copper from waste PCBs could result in significant reduction in carbon dioxide emissions (-93.6 kg CO2 eq of 1000 kg waste PCBs), thus mitigating the carbon footprint of global copper use through the proposed solvometallurgical recycling process of secondary resources.[Abstract] [Full Text] [Related] [New Search]