These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The effect of mixing on the dispersibility of adhesive mixtures for inhalation. Comparison of high shear and Turbula mixers.
    Author: Thalberg K, Ivarsson L, Svensson M, Elfman P, Ohlsson A, Stuckel J, Lyberg AM.
    Journal: Eur J Pharm Sci; 2024 Feb 01; 193():106679. PubMed ID: 38128841.
    Abstract:
    This study investigates the effect of different mixers and the applicability of the mixing energy (ME) concept to dry powder formulations for inhalation. With the aim to step-wise build and expand this concept, adhesive mixtures of 2 % budesonide and lactose carrier were investigated, both with 1 % magnesium stearate (MgSt) added in a 'coating' step, and without, the latter referred to as 'naked' formulations. For high shear mixed formulations, the fine particle fraction (FPF) was found to increase with increasing ME up to 60 % and thereafter decreased, using the Novolizer device. The data could be well fitted to the modeling equation, thus confirming the validity of the ME concept. The naked formulations displayed a linear decrease in FPF with increasing ME, again showing the validity of the ME concept. For Turbula mixed formulations, FPF increased with increased mixing time (and mixing energy) for all batches. The naked (binary) composition reached to higher FPF values than for high shear mixing and the formulation with MgSt reached to FPF values around 60 %, demonstrating that it is possible to achieve the same high drug dispersibility with the Turbula mixer as for high shear mixer. An equation for calculation of mixing energy in Turbula mixing was set up in an analogous way to the equation for high shear mixing, which enabled direct comparison between the two mixers.
    [Abstract] [Full Text] [Related] [New Search]