These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: SrTiO3-SrVO3 Ceramics for Solid Oxide Fuel Cell Anodes: A Route from Oxidized Precursors. Author: Macías J, Frade JR, Yaremchenko AA. Journal: Materials (Basel); 2023 Dec 14; 16(24):. PubMed ID: 38138780. Abstract: Perovskite-type Sr(Ti,V)O3-δ ceramics are promising anode materials for natural gas- and biogas-fueled solid oxide fuel cells, but the instability of these phases under oxidizing conditions complicates their practical application. The present work explores approaches to the fabrication of strontium titanate-vanadate electrodes from oxidized precursors. Porous ceramics with the nominal composition SrTi1-yVyOz (y = 0.1-0.3) were prepared in air via a solid state reaction route. Thermal processing at temperatures not exceeding 1100 °C yielded composite ceramics comprising perovskite-type SrTiO3, pyrovanadate Sr2V2O7 and orthovanadate Sr3(VO4)2 phases, while increasing firing temperatures to 1250-1440 °C enabled the formation of SrTi1-yVyO3 perovskites. Vanadium was found to substitute into the titanium sublattice predominantly as V4+, even under oxidizing conditions at elevated temperatures. Both perovskite and composite oxidized ceramics exhibit moderate thermal expansion coefficients in air, 11.1-12.1 ppm/K at 30-1000 °C, and insignificant dimensional changes induced by reduction in a 10%H2-N2 atmosphere. The electrical conductivity of reduced perovskite samples remains comparatively low, ~10-1 S/cm at 900 °C, whereas the transformation of oxidized vanadate phases into high-conducting SrVO3-δ perovskites upon reduction results in enhancement in conductivity, which reaches ~3 S/cm at 900 °C in porous composite ceramics with nominal composition SrTi0.7V0.3Oz. The electrical performance of the composite is expected to be further improved by optimization of the processing route and microstructure to facilitate the reduction of the oxidized precursor and attain better percolation of the SrVO3 phase.[Abstract] [Full Text] [Related] [New Search]